Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ)

ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

Одобрено на заседании Ученого совета ИАТЭ НИЯУ МИФИ Протокол от 24.04.2023 № 23.4

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Импульсные реакторы и связанные реакторно-лазерные системы

название дисциплины

для направления подготовки

14.03.02 Ядерные физика и технологии

код и направления подготовки

образовательная программа

Инновационные ядерные технологии

Форма обучения: очная

г. Обнинск 2023 г.

Область применения

Фонд оценочных средств (ФОС) — является обязательным приложением к рабочей программе дисциплины «Импульсные реакторы и связанные реакторно-лазерные системы» и обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущей и промежуточной аттестации по дисциплине.

Цели и задачи фонда оценочных средств

Целью Фонда оценочных средств является установление соответствия уровня подготовки обучающихся требованиям федерального государственного образовательного стандарта.

Для достижения поставленной цели Фондом оценочных средств по дисциплине «Импульсные реакторы и связанные реакторно-лазерные системы» решаются следующие задачи:

- контроль и управление процессом приобретения обучающимися знаний, умений и навыков, предусмотренных в рамках данной дисциплины;
- контроль и оценка степени освоения компетенций, предусмотренных в рамках данной дисциплины;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения в образовательный процесс в рамках данной дисциплины.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

1.1. В результате освоения ОП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисииплине:

Код компетенций	Наименование компетенции	Код и наименование индикатора достижения компетенции
ПК-3	Способен проводить физические эксперименты по заданной методике, составлять описания проводимых исследований, отчетов, анализу результатов и подготовке научных публикаций	3-ПК-3 Знать: основные физические законы и методы обработки данных У-ПК-3 Уметь: работать по заданной методике, составлять описания проводимых исследований и отчеты, подготавливать материалы для научных публикаций В-ПК-3 Владеть: навыками проведения физических экспериментов по заданной методике, основами компьютерных и информационных технологий, научной терминологией.

1.2. Этапы формирования компетенций в процессе освоения ОП бакалавриата

Компоненты компетенций, как правило, формируются при изучении нескольких дисциплин, а также в немалой степени в процессе прохождения практик, НИР и во время самостоятельной работы обучающегося. Выполнение и защита ВКР являются видом учебной деятельности, который завершает процесс формирования компетенций.

Этапы формирования компетенции в процессе освоения дисциплины:

- **начальный** этап на этом этапе формируются знаниевые и инструментальные основы компетенции, осваиваются основные категории, формируются базовые умения. Студент воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу;
- **основной** этап знания, умения, навыки, обеспечивающие формирование компетенции, значительно возрастают, но еще не достигают итоговых значений. На этом этапе студент осваивает аналитические действия с предметными знаниями по дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя коррекцию в ходе работы, переносит знания и умения на новые условия;
- **завершающий** этап на этом этапе студент достигает итоговых показателей по заявленной компетенции, то есть осваивает весь необходимый объем знаний, овладевает всеми умениями и навыками в сфере заявленной компетенции. Он способен использовать эти знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях.

Этапы формирования компетенций в ходе освоения дисциплины отражаются в тематическом плане (см. РПД).

1.3. Связь между формируемыми компетенциями и формами контроля их освоения

№ п/п	(темы) дисциплины	Индикатор достижения компетенции	Наименование оценочного средства текущей и промежуточной аттестации	
	Текущая аттестация, 7 семестр			
1.	1.1. Введение			
2.	1.2. Импульсные реакторы	3-ПК-3; У-ПК-3; В-ПК-3	T1	
	самогасящего действия			
3.	1.3. Импульсные реакторы	3-ПК-3; У-ПК-3; В-ПК-3	T2	

	периодического действия				
	Промежуточная аттестация, 7 семестр				
	Зачет	3-ПК-3; У-ПК-3; В-ПК-3	Вопросы к зачету		
	Тек	ущая аттестация, 8 семестр			
1.	2.1. Кинетика нейтронов в системах связанных реакторов				
2.	2.2. Нейтронно-физические характеристики многозонных реакторных систем	3-ПК-3; У-ПК-3; В-ПК-3	Т3		
3.	2.3. Специальные системы связанного типа				
4.	2.4. Численные методы анализа характеристик связанных реакторных систем	3-ПК-3; У-ПК-3; В-ПК-3	T4		
	Промежуточная аттестация, 8 семестр				
	Экзамен	3-ПК-3; У-ПК-3; В-ПК-3	Экзаменационный билет		

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Конечными результатами освоения программы дисциплины являются сформированные когнитивные дескрипторы «знать», «уметь», «владеть», расписанные по отдельным компетенциям, которые приведены в п.1.1. Формирование этих дескрипторов происходит в процессе изучения дисциплины по этапам в рамках различного вида учебных занятий и самостоятельной работы.

Выделяются три уровня сформированности компетенций на каждом этапе: пороговый, продвинутый и высокий.

Уровни	Содержательное	Основные признаки выделения уровня	БРС,	ECTS/Пятибалльная
	описание уровня		%	шкала для оценки
		n v	освоения	экзамена/зачета
Высокий	Творческая деятельность	Включает нижестоящий уровень.		
Все виды компетенций		Студент демонстрирует свободное обладание		
сформированы на высоком		компетенциями, способен применить их в		Α/
уровне в соответствии с		нестандартных ситуациях: показывает	90-100	Отлично/
целями и задачами		умение самостоятельно принимать решение,	, , , , ,	Зачтено
дисциплины		решать проблему/задачу теоретического или		34 11 6110
		прикладного характера на основе изученных		
		методов, приемов, технологий		
Продвинутый	Применение знаний и	, ,,		
Все виды компетенций	умений в более широких	Студент может доказать владение		B/
сформированы на	контекстах учебной и	1 13	85-89	Очень хорошо/
продвинутом уровне в	профессиональной	собирать, систематизировать, анализировать		Зачтено
соответствии с целями и	деятельности, нежели по	и грамотно использовать информацию из		
задачами дисциплины	образцу, большей долей	самостоятельно найденных теоретических		
	самостоятельности и	источников и иллюстрировать ими		C/
	инициативы	теоретические положения или обосновывать	75-84	Хорошо/
		практику применения.		Зачтено
Пороговый	Репродуктивная	Студент демонстрирует владение	65-74	D/Удовлетворительно/
Все виды компетенций	деятельность	компетенциями в стандартных ситуациях:		Зачтено
сформированы на пороговом		излагает в пределах задач курса теоретически	60.64	Е/П
уровне		и практически контролируемый материал.	60-64	Е/Посредственно
				/Зачтено
Ниже порогового	Отсутствие признаков порогового уровня: компетенции не сформированы.		0-59	Неудовлетворительно/
	Студент не в состоянии продемонстрировать обладание компетенциями в			Незачтено
	стандартных ситуациях.			

Оценивание результатов обучения студентов по дисциплине осуществляется по регламенту текущего контроля и промежуточной аттестации.

Критерии оценивания компетенций на каждом этапе изучения дисциплины для каждого вида оценочного средства и приводятся в п. 4 ФОС. Итоговый уровень сформированности компетенции при изучении дисциплины определяется по таблице. При этом следует понимать, что граница между уровнями для конкретных результатов освоения образовательной программы может смещаться.

Уровень сформированности компетенции	Текущий контроль	Промежуточная аттестация
	высокий	высокий
высокий	продвинутый	высокий
	высокий	продвинутый
	пороговый	высокий
	высокий	пороговый
продвинутый	продвинутый	продвинутый
	продвинутый	пороговый
	пороговый	продвинутый
пороговый	пороговый	пороговый
	пороговый	ниже порогового
ниже порогового	ниже порогового	-

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

- Итоговая аттестация по дисциплине является интегральным показателем качества теоретических и практических знаний и навыков обучающихся по дисциплине и складывается из оценок, полученных в ходе текущей и промежуточной аттестации.
- Текущая аттестация в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы обучающихся.
- Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины.
 - Текущая аттестация в 7 семестре осуществляется два раза в семестр:
- о контрольная точка № 1 (КТ № 1) выставляется в электронную ведомость не позднее 8 недели учебного семестра. Включает в себя оценку мероприятий текущего контроля аудиторной и самостоятельной работы обучающегося по разделам/темам учебной дисциплины с 1 по 8 неделю учебного семестра.
- о контрольная точка № 2 (КТ № 2) выставляется в электронную ведомость не позднее 16 недели учебного семестра. Включает в себя оценку мероприятий текущего контроля аудиторной и самостоятельной работы обучающегося по разделам/темам учебной дисциплины с 9 по 16 неделю учебного семестра.
- Текущая аттестация в 8 семестре обучения по образовательным программам бакалавриата, в котором единственная контрольная точка № 1 (КТ № 1) выставляется в электронную ведомость не позднее 6 недели учебного семестра. Включает в себя оценку мероприятий текущего контроля аудиторной и самостоятельной работы обучающегося по разделам/темам учебной дисциплины с 1 по 6 неделю учебного семестра.
- Результаты текущей и промежуточной аттестации подводятся по шкале балльнорейтинговой системы.
 - В рамках дисциплины проводится курсовое проектирование.

7 семестр

Этап рейтинговой системы /	Неделя	Балл	
Оценочное средство		Минимум*	Максимум**
Текущая аттестация	1-16	36 - 60% от	60
		максимума	
Контрольная точка № 1	7-8	18 (60% от 30)	30
T1	8	18	30
Контрольная точка № 2	15-16	18 (60% от 30)	30
T2	15	18	30
Промежуточная аттестация	-	24 – (60% 40)	40
Зачет	-		
Bonpoc 1	-	12	20
Bonpoc 2	-	12	20
ИТОГО по дисциплине		60	100

8 семестр

Этап рейтинговой системы /	Неделя	Балл		
Оценочное средство		Минимум*	Максимум**	
Текущая аттестация	1-16	36 - 60% от	60	
		максимума		
Контрольная точка № 1	5-6	36 (60% от 30)	60	
T3	5	18	30	
T4	6	18	30	
Промежуточная аттестация	-	24 - (60% 40)	40	
Экзамен	-			
Bonpoc 1	-	12	20	
Bonpoc 2	-	12	20	
ИТОГО по дисциплине		60	100	

^{* -} Минимальное количество баллов за оценочное средство — это количество баллов, набранное обучающимся, при котором оценочное средство засчитывается, в противном случае обучающийся должен ликвидировать появившуюся академическую задолженность по текущей или промежуточной аттестации. Минимальное количество баллов за текущую аттестацию, в т.ч. отдельное оценочное средство в ее составе, и промежуточную аттестацию составляет 60% от соответствующих максимальных баллов.

4.Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков

Форма экзаменационного билета

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИФИМ УКИН ЄТАИ)

ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

Направление подготовки	14.03.02 «Ядерные физика и технологии»		
Образовательная программа	«Инновационные ядерные технологии»		
Дисциплина	· ·		
	31	КЗАМЕНАЦИОННЫЙ	БИЛЕТ № <u></u>
1. Вопро	с для провер	оки уровня обученно	сти ЗНАТЬ
2. Вопро	с для провер	эки уровня обученно	сти УМЕТЬ и ВЛАДЕТЬ
Составитель		(подпись)	О.Ф. Кухарчук
Начальник отде	еления	(подпись)	Д.С. Самохин
« <u></u> »	_20	Γ.	

Критерии и шкала оценивания

Оценка	Критерии оценки
Отлично	Студент должен:
36-40	- продемонстрировать глубокое и прочное усвоение знаний
	программного материала;
	- исчерпывающе, последовательно, грамотно и логически стройно
	изложить теоретический материал;
	- правильно формулировать определения;
	- продемонстрировать умения самостоятельной работы с
	литературой;
	- уметь сделать выводы по излагаемому материалу.
Хорошо	Студент должен:
30-35	- продемонстрировать достаточно полное знание программного
	материала;
	- продемонстрировать знание основных теоретических понятий;
	достаточно последовательно, грамотно и логически стройно
	излагать материал;
	- продемонстрировать умение ориентироваться в литературе;
	- уметь сделать достаточно обоснованные выводы по излагаемому
	материалу.
Удовлетворительно	Студент должен:
24-29	- продемонстрировать общее знание изучаемого материала;
	- показать общее владение понятийным аппаратом дисциплины;
	- уметь строить ответ в соответствии со структурой излагаемого
	вопроса;
	- знать основную рекомендуемую программой учебную
	литературу.
Неудовлетворительно	Студент демонстрирует:
23 и меньше	- незнание значительной части программного материала;
	- не владение понятийным аппаратом дисциплины;
	- существенные ошибки при изложении учебного материала;
	- неумение строить ответ в соответствии со структурой
	излагаемого вопроса;
	- неумение делать выводы по излагаемому материалу.

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИФИМ УКИН ЄТАИ)

ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

Направление	14.03.02 «Ядерные физика и технологии»
подготовки	
Образовательная программа	«Инновационные ядерные технологии»
Дисциплина	Импульсные реакторы и связанные реакторно-лазерные системы

ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Реакторно-лазерные системы импульсного действия: особенности конструкции, принцип действия.
- 2. Интегральная модель нейтронной кинетики: связь с уравнением Больцмана, многозонное приближение интегрального уравнения нейтронной кинетики, связь с общей теорией связанных реакторов.
- 3.Импульсные реакторы как источники излучения для научно-технических применений: история создания, основные типы реакторов.
- 4. Аналитические оценки параметров нейтронных импульсов в системе типа импульсный реактор подкритический блок.
- 5. Принцип действия самогасящего импульсного реактора. Реактор БИР.
- 6.Модифицированная модель нейтронной кинетики связанной системы быстрый реактор подкритическая сборка. Связь с общей формулировкой.
- 7. Кинетика импульсного реактора самогасящего действия. Уравнения одноточечной модели кинетики. Безынерционное гашение реактивности.
- 8.Особенности поведения пространственно-временного поля делений в связанных реакторных системах импульсного действия.
- 9. Кинетика импульсного реактора самогасящего действия с учетом механической инерции топлива. Методы идентификации интегральных кинетических параметров связанных реакторных систем.
- 10.Реактор самогасящего действия: запаздывающие нейтроны и хвост вспышки, влияние отраженных и замедленных нейтронов, флуктуация времени ожидания вспышек.
- 11. Многозонные реакторные системы связанного типа: основные определения, условие критичности, уравнения кинетики нейтронов.
- 12. Принцип действия импульсного реактора периодического действия. Реакторы ИБР и ИБР-2.
- 13. Кинетика нейтронов в системе реактор подкритический блок импульсно-периодического действия.
- 14.Основные соотношения нейтронно-физической теории ИРПД: статика.
- 15. Анализ критичности в связанной системе типа реактор подкритический блок.

- 16.Основные соотношения нейтронно-физической теории ИРПД: неравновесный режим, форма импульса в одноточечной модели.
- 17. Кинетика импульсного реактора самогасящего действия с пассивным и активным отражателями нейтронов.
- 18.Ядра перехода интегральной модели нейтронной кинетики. Перенос нейтронов в размножающих системах с внешним источником.
- 19. Применение теории возмущений к анализу связанных реакторных систем.
- 20. Двухзонный импульсный апериодический реактор самогасящего действия БАРС-6.
- 21. Математическая модель для описания штатных и аварийных переходных процессов в реакторе БАРС-6.
- 22. Лазерные эксперименты на реакторе БАРС-6. Энерговклад осколков деления в лазерно-активную среду.
- 23. Энергетический макет оптического квантового усилителя с ядерной накачкой. Описание конструкции и принцип действия.
- 24. Математическая модель динамики оптического квантового усилителя с ядерной накачкой. Нейтронно-физические и динамические характеристики систем различной конфигурации.

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ)

ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

Направление	14.03.02 «Ядерные физика и технологии»
подготовки	
Образовательная программа	«Инновационные ядерные технологии»
Дисциплина	Импульсные реакторы и связанные реакторно-лазерные системы

ВОПРОСЫ К ЗАЧЕТУ

- 1. Принцип действия самогасящего импульсного реактора. Реакторы БИР и SPR II.
- 2. Кинетика импульсного реактора самогасящего действия.
- 3. Уравнения одноточечной модели кинетики.
- 4. Безынерционное гашение реактивности.
- 5. Вспышка мощности с учетом механической инерции.
- 6. Флуктуации времени ожидания вспышек мощности.
- 7. Запаздывающие нейтроны и "хвост" вспышки.
- 8. Влияние отраженных и замедленных нейтронов.
- 9. Характеристики апериодических импульсных реакторов.
- 10. Реакторы с металлической активной зоной. Бассейновые, уран-графитовые и растворимые реакторы.
- 11. Особенности динамики растворных импульсных реакторов.
- 12. Принцип работы и особенности конструкции ИРПД. Реакторы ИБР и ИБР-2.
- 13. Основные отношения нейтронно-физической теории ИРПД. Статика и кинетика.
- 14. Модуляция реактивности в ИРПД. Возможные схемы модуляции.
- 15. Применение импульсных реакторов и бустеров в науке и технике.
- 16. Многозонные реакторные системы связанного типа. Основные определения. Уравнения кинетики нейтронов.
- 17. Реакторные установки связанного типа: ZPR, TRIGA+LOPRA, ACRR+FREC, БИР+ПС, ЭБР+РУС, БАРС-5, ТИРАН.
- 18. Аналитические оценки параметров нейтронных импульсов в системе типа импульсный реактор подкритический блок.
- 19. Кинетика нейтронов в системе реактор подкритический блок импульсно-периодического действия. Подкритические связанные реакторные системы с внешним источником нейтронов.
- 20. Интегральная модель нейтронной кинетики. Связь с уравнением Больцмана.
- 21. Многозонное приближение интегрального уравнения нейтронной кинетики. Связь с общей теорией связанных реакторов.
- 22. Модифицированная модель нейтронной кинетики связанной системы "быстрый реактор подкритическая сборка". Связь с общей формулировкой.

Критерии и шкала оценивания

Kphi ephi ii mkana odenibanini		
Оценка	Критерии оценки	
Зачтено 24-40	Выставляется при соответствии параметрам экзаменационной шкалы на уровнях «отлично», «хорошо», «удовлетворительно».	
Незачтено 23 и меньше	Выставляется при соответствии параметрам экзаменационной шкалы на уровне «неудовлетворительно».	

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИФИМ УКИН ЄТАИ)

ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

Направление	14.03.02 «Ядерные физика и технологии»
подготовки	
Образовательная программа	«Инновационные ядерные технологии»
Дисциплина	Импульсные реакторы и связанные реакторно-лазерные системы

Комплект тестовых заданий

- 1. Что такое импульсный реактор?
- А. Ядерный реактор, работающий короткое время на большой мощности
- В. Ядерный реактор, работающий в режиме контролируемых и повторяемых вспышек деления атомных ядер
- С. Ядерный реактор, обеспечивающий получение высоких потоков ионизирующего излучения
- 2. Что определяет квазистатический коэффициент гашения реактивности в импульсном реакторе самогасящегося действия?
- А. Изменение реактивности при выделении в реакторе единичной доли энергии
- В. Изменение мощности при выделении в реакторе единичной доли энергии
- С. Изменение размеров активной зоны при выделении в реакторе единичной доли энергии
- 3. Значение эффективного коэффициента размножения нейтронов в реакторе равно k. Чему равна реактивность на мгновенных нейтронах?

A.
$$\frac{k-1}{k}$$

B.
$$\frac{k(1-\beta)-1}{\ell}$$

C.
$$k(1-\beta)-1$$

- 4. Какое из выражений правильно определяет полную энергию вспышки в импульсном реакторе самогасящегося действия в безынерционном приближении:
- A. $\frac{\epsilon_0}{\gamma}$
- **B.** $\frac{2\varepsilon_0}{\gamma}$
- C. $\frac{\epsilon_0}{2\gamma}$
- 5. Среднее время жизни мгновенных нейтронов в реакторе равно $1.4 \cdot 10^{-8}$ с, эффективная доля запаздывающих нейтронов (β) 0.007. В реактор скачком введена реактивность на мгновенных нейтронах равная 0.1 β . Какой начальный период разгона реактора?
- А. 2 мкс
- В. 20 мкс
- С. 200 мкс
- 6. Какое из выражений правильно описывает в общем виде обратную связь по температуре в быстром импульсном реакторе?
- **A.** $\int_{V} \mathbf{u}(\mathbf{r}, \tau) \operatorname{grad} W(\mathbf{r}) d\mathbf{r}$
- B. $\mathbf{u}(\mathbf{r}, \tau) \int_{V} \operatorname{grad} W(\mathbf{r}) d\mathbf{r}$
- C. $\int_{0}^{t} \mathbf{u}(\mathbf{r}, \tau) \operatorname{grad} W(\mathbf{r}) d\tau$
- 7. В импульсный реактор самогасящегося действия была введена реактивность на мгновенных нейтронах равная ε_0 . Чему равно изменение реактивности реактора после генерации импульса (в случае безынерционного гашения)?
- A. $-\varepsilon_0$
- B. 0
- C. $2\varepsilon_0$

- 8. Импульсный реактор периодического действия между импульсами.....
- А. Находится в критическом состоянии
- В. Подкритичен на мгновенных нейтронах
- С. Надкритичен на мгновенных нейтронах

D. Подкритичен на запаздывающих нейтронах

- 9. Что такое фактор умножения нейтронов источника в импульсном реакторе периодического действия?
- А. Отношение энергии импульса к средней за период мощности источника запаздывающих нейтронов
- В. Отношение энергии импульса к мощности источника запаздывающих нейтронов непосредственно перед импульсом
- С. Отношение энергии импульса к мощности внешнего источника нейтронов
- D. Отношение энергии импульса к средней за период мощности реактора
- 10. Какое из выражений правильно определяет критическое условие для импульсного реактора периодического действия в случае часто повторяющихся импульсов:

A.
$$\frac{M\beta}{T_p} + \frac{\beta}{|\varepsilon_b|} = 0$$

$$\mathbf{B.} \ \frac{M\beta}{T_p} + \frac{\beta}{|\varepsilon_b|} = 1$$

C.
$$\frac{M\beta}{T_p} + \frac{\beta}{|\varepsilon_b|} = 1 - \beta$$

- 11. Когда реализуется максимум вспышки в импульсном реакторе?
- А. Когда реактивность реактора максимальна
- В. В момент перехода реактора через запаздывающую критичность
- С. В момент перехода реактора через мгновенную критичность
- D. Когда реактор становится подкритическим на запаздывающих нейтронах

- 12. Импульсный реактор периодического действия работает с частотой 5 Γ ц, а средняя тепловая мощность реактора равна 10^7 Вт. Чему равно энерговыделение в реакторе за период?
- А. 50 МДж
- В. 10 МДж
- С. 5 МДж
- **D. 2 МДж**
- 13. Что такое связанная реакторная система?
- А. Система из нескольких ядерных реакторов, обменивающихся нейтронами
- В. Многозонная реакторная система, в которой спектры нейтронов в каждой из зон существенно различны
- С. Многозонная реакторная система, в которой часть нейтронов деления одной зоны вызывает деления в другой зоне
- 14. Какое из выражений правильно определяет условие критичности для системы m связанных реакторов:

$$\mathbf{A.} \begin{vmatrix} k_{11} - 1 & \cdots & k_{1m} \\ \vdots & \vdots & \vdots \\ k_{m1} & \cdots & k_{mm} - 1 \end{vmatrix} = 0$$

$$\mathbf{B}. \begin{vmatrix} k_{11} & \cdots & k_{1m} \\ \vdots & \vdots & \vdots \\ k_{m1} & \cdots & k_{mm} \end{vmatrix} = \mathbf{1}$$

C.
$$\begin{vmatrix} k_{11} - 1 & \cdots & k_{1m} - 1 \\ \vdots & \vdots & \vdots \\ k_{m1} - 1 & \cdots & k_{mm} - 1 \end{vmatrix} = 0$$

15. В отдельных зонах связанной реакторной системы отсутствуют внешние источники нейтронов. Какое из выражений правильно определяет пространственно-временное распределение поля делений в системе:

A.
$$P(\vec{\mathbf{r}},t) = \int_{0}^{t} \alpha(\vec{\mathbf{r}},\tau \to \vec{\mathbf{r}},t) P(\vec{\mathbf{r}},\tau) d\tau$$

B.
$$P(\vec{\mathbf{r}},t) = \int_{0}^{t} \int_{V} \alpha(\vec{\mathbf{r}}',\tau \to \vec{\mathbf{r}},t) P(\vec{\mathbf{r}}',\tau) d\vec{\mathbf{r}}' d\tau$$

C.
$$P(\vec{\mathbf{r}},t) = \int_{V} \alpha(\vec{\mathbf{r}}',t \to \vec{\mathbf{r}},t) P(\vec{\mathbf{r}}',\tau) d\vec{\mathbf{r}}'$$

- 16. Когда справедливо соотношение $k_{sys} = k_{rr} + \alpha^* = 1$?
- А. При малых значениях параметра α^*
- В. При больших значениях параметра α^*

C. При любых значениях параметра α^*

- 17. Импульсный реактор без подкритического блока находился в критическом состоянии. При установке возле его активной зоны подкритической сборки значение «активной» составляющей реактивности реактора стало равным 0.75β, «пассивной» 0.35β. Вся связанная система......
- А. Осталась в критическом состоянии
- В. Стала подкритической
- С. Стала надкритической на запаздывающих нейтронах

D. Стала надкритической на мгновенных нейтронах

- 18. Имеется связанная система, состоящая из запального реактора и подкритического блока. Энерговыделение в запальном реакторе в импульсе равно 10 МДж, значение коэффициента связи k_{br} равно 0.5, эффективного коэффициента размножения нейтронов в подкритическом блоке 0.9. Чему равно энерговыделение в импульсе в подкритическом блоке?
- А. 5 МДж
- В. 10 МДж
- С. 50 МДж
- D. 100 МДж
- 19. Какая из перечисленных ниже ядерных реакций имеет максимальный энергетический выход?

A.
235
 U + n = 2 ff + vn

B.
3
 He + n = p+ 3 H

C.
$${}^{10}B + n = \alpha + {}^{7}Li$$

D.
6
Li + n = $\alpha + ^{3}$ H

- 20. Что такое лазер с ядерной накачкой?
- А. Устройство, в котором лазерное излучение получают из ядерных реакций
- В. Устройство, в котором лазерное излучение получают путем возбуждения среды продуктами ядерных реакций
- С. Устройство, в котором ядерные реакции протекают под действием лазерного излучения

Критерии оценивания: Количество правильных ответов

Оценка	Шкала
Отлично	Количество верных ответов в интервале: 90-100%
Хорошо	Количество верных ответов в интервале: 70-89%
Удовлетворительно	Количество верных ответов в интервале: 60-69%
Неудовлетворительно	Количество верных ответов в интервале: 0-59%